For OO: For : where R_{x,y,z} are the Cartesian components of R For : where {xi,yi,zi} denote the Cartesian components and
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp) | :: | kpt(3) | ||||
complex(kind=dp), | intent(in), | dimension(:, :, :) | :: | OO_R | ||
complex(kind=dp), | intent(in), | dimension(:, :, :, :) | :: | oo_a_R | ||
complex(kind=dp), | intent(out), | optional | dimension(:, :) | :: | OO | |
complex(kind=dp), | intent(out), | optional | dimension(:, :, :) | :: | OO_da | |
complex(kind=dp), | intent(out), | optional | dimension(:, :, :, :) | :: | OO_dadb |
subroutine pw90common_fourier_R_to_k_new_second_d_TB_conv(kpt, OO_R, oo_a_R, OO, OO_da, OO_dadb)
!=======================================================!
! modified version of pw90common_fourier_R_to_k_new_second_d, includes wannier centres in
! the exponential inside the sum (so called TB convention)
!
!! For OO:
!! $$O_{ij}(k) = \sum_R e^{+ik.(R+tau_ij)}.O_{ij}(R)$$
!! For $$OO_{dx,dy,dz}$$:
!! $$\sum_R [i.(R+tau_ij)_{dx,dy,dz}.e^{+ik.(R+tau_ij)}.O_{ij}(R)]$$
!! where R_{x,y,z} are the Cartesian components of R
!! For $$OO_{dx1,dy1,dz1;dx2,dy2,dz2}$$:
!! $$-\sum_R [(R+tau_ij)_{dx1,dy1,dz1}.(R+tau_ij)_{dx2,dy2,dz2}.e^{+ik.(R+tau_ij)}.O_{ij}(R)]$$
!! where {xi,yi,zi} denote the Cartesian components and
! tau_ij = tau_j - tau_i, being tau_i=<0i|r|0i> the individual wannier centres
!=======================================================!
use w90_constants, only: dp, cmplx_0, cmplx_i, twopi
use w90_parameters, only: timing_level, num_kpts, kpt_latt, num_wann, &
use_ws_distance, wannier_centres, recip_lattice
use w90_ws_distance, only: irdist_ws, crdist_ws, wdist_ndeg, ws_translate_dist
use w90_utility, only: utility_cart_to_frac
implicit none
! Arguments
!
real(kind=dp) :: kpt(3)
complex(kind=dp), dimension(:, :, :), intent(in) :: OO_R
complex(kind=dp), optional, dimension(:, :), intent(out) :: OO
complex(kind=dp), optional, dimension(:, :, :), intent(out) :: OO_da
complex(kind=dp), optional, dimension(:, :, :, :), intent(out) :: OO_dadb
complex(kind=dp), dimension(:, :, :, :), intent(in) :: oo_a_R
integer :: ir, i, j, ideg, a, b
real(kind=dp) :: rdotk
complex(kind=dp) :: phase_fac
real(kind=dp) :: local_wannier_centres(3, num_wann), wannier_centres_frac(3, num_wann)
real(kind=dp) :: r_sum(3)
r_sum = 0.d0
if (use_ws_distance) CALL ws_translate_dist(nrpts, irvec)
! calculate wannier centres in cartesian
local_wannier_centres(:, :) = 0.d0
do j = 1, num_wann
do ir = 1, nrpts
if ((irvec(1, ir) .eq. 0) .and. (irvec(2, ir) .eq. 0) .and. (irvec(3, ir) .eq. 0)) then
local_wannier_centres(1, j) = real(oo_a_R(j, j, ir, 1))
local_wannier_centres(2, j) = real(oo_a_R(j, j, ir, 2))
local_wannier_centres(3, j) = real(oo_a_R(j, j, ir, 3))
endif
enddo
enddo
! rotate wannier centres from cartesian to fractional coordinates
wannier_centres_frac(:, :) = 0.d0
do ir = 1, num_wann
call utility_cart_to_frac(local_wannier_centres(:, ir), wannier_centres_frac(:, ir), recip_lattice)
enddo
if (present(OO)) OO = cmplx_0
if (present(OO_da)) OO_da = cmplx_0
if (present(OO_dadb)) OO_dadb = cmplx_0
do ir = 1, nrpts
! [lp] Shift the WF to have the minimum distance IJ, see also ws_distance.F90
if (use_ws_distance) then
do j = 1, num_wann
do i = 1, num_wann
do ideg = 1, wdist_ndeg(i, j, ir)
rdotk = twopi*dot_product(kpt(:), real(irdist_ws(:, ideg, i, j, ir) + &
wannier_centres_frac(:, j) - wannier_centres_frac(:, i), dp))
phase_fac = cmplx(cos(rdotk), sin(rdotk), dp)/real(ndegen(ir)*wdist_ndeg(i, j, ir), dp)
if (present(OO)) OO(i, j) = OO(i, j) + phase_fac*OO_R(i, j, ir)
if (present(OO_da)) then
do a = 1, 3
OO_da(i, j, a) = OO_da(i, j, a) + cmplx_i* &
(crdist_ws(a, ideg, i, j, ir) + local_wannier_centres(a, j) - &
local_wannier_centres(a, i))*phase_fac*OO_R(i, j, ir)
enddo
endif
if (present(OO_dadb)) then
do a = 1, 3
do b = 1, 3
OO_dadb(i, j, a, b) = OO_dadb(i, j, a, b) - &
(crdist_ws(a, ideg, i, j, ir) + local_wannier_centres(a, j) - &
local_wannier_centres(a, i))* &
(crdist_ws(b, ideg, i, j, ir) + local_wannier_centres(b, j) - &
local_wannier_centres(b, i))*phase_fac*OO_R(i, j, ir)
enddo
enddo
end if
enddo
enddo
enddo
else
! [lp] Original code, without IJ-dependent shift:
do j = 1, num_wann
do i = 1, num_wann
r_sum(:) = real(irvec(:, ir)) + wannier_centres_frac(:, j) - wannier_centres_frac(:, i)
rdotk = twopi*dot_product(kpt(:), r_sum(:))
phase_fac = cmplx(cos(rdotk), sin(rdotk), dp)/real(ndegen(ir), dp)
if (present(OO)) OO(i, j) = OO(i, j) + phase_fac*OO_R(i, j, ir)
if (present(OO_da)) then
do a = 1, 3
OO_da(i, j, a) = OO_da(i, j, a) + cmplx_i* &
(crvec(a, ir) + local_wannier_centres(a, j) - &
local_wannier_centres(a, i))*phase_fac*OO_R(i, j, ir)
enddo
endif
if (present(OO_dadb)) then
do a = 1, 3
do b = 1, 3
OO_dadb(i, j, a, b) = &
OO_dadb(i, j, a, b) - &
(crvec(a, ir) + local_wannier_centres(a, j) - local_wannier_centres(a, i))* &
(crvec(b, ir) + local_wannier_centres(b, j) - local_wannier_centres(b, i))* &
phase_fac*OO_R(i, j, ir)
enddo
enddo
end if
enddo
enddo
endif
enddo
end subroutine pw90common_fourier_R_to_k_new_second_d_TB_conv